Neighbor sum distinguishing edge colorings of graphs with bounded maximum average degree
نویسندگان
چکیده
منابع مشابه
Neighbor sum distinguishing edge colorings of graphs with small maximum average degree
A proper edge-k-coloring of a graph G is an assignment of k colors 1, 2, · · · , k to the edges of G such that no two adjacent edges receive the same color. A neighbor sum distinguishing edge-k-coloring of G is a proper edge-k-coloring of G such that for each edge uv ∈ E(G), the sum of colors taken on the edges incident with u is different from the sum of colors taken on the edges incident with...
متن کاملk-forested choosability of graphs with bounded maximum average degree
A proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. A graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $G$ such that each vertex receives a color from its own list. In this paper, we prov...
متن کاملk-forested choosability of graphs with bounded maximum average degree
a proper vertex coloring of a simple graph is $k$-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than $k$. a graph is $k$-forested $q$-choosable if for a given list of $q$ colors associated with each vertex $v$, there exists a $k$-forested coloring of $g$ such that each vertex receives a color from its own list. in this paper, we prov...
متن کاملNeighbor-distinguishing k-tuple edge-colorings of graphs
This paper studies proper k-tuple edge-colorings of graphs that distinguish neighboring vertices by their sets of colors. Minimum number of colors for such colorings are determined for cycles, complete graphs and complete bipartite graphs. A variation in which the color sets assigned to edges have to form cyclic intervals is also studied and similar results are given.
متن کاملK-forested Choosability of Graphs with Bounded Maximum Average Degree
A proper vertex coloring of a simple graph is k-forested if the graph induced by the vertices of any two color classes is a forest with maximum degree less than k. A graph is k-forested qchoosable if for a given list of q colors associated with each vertex v, there exists a k-forested coloring of G such that each vertex receives a color from its own list. In this paper, we prove that the k-fore...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Applied Mathematics
سال: 2014
ISSN: 0166-218X
DOI: 10.1016/j.dam.2013.10.009